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Abstract— Recent interest towards autonomous navigation
and exploration robots for indoor applications has spurred
research into indoor Simultaneous Localization and Mapping
(SLAM) robot systems. While most of these SLAM systems
use Visual and LiDAR sensors in tandem with an odometry
sensor, these odometry sensors drift over time. To combat
this drift, Visual SLAM systems deploy compute and memory
intensive search algorithms to detect ‘Loop Closures’, which
make the trajectory estimate globally consistent. To circumvent
these resource (compute and memory) intensive algorithms, we
present ViWiD, which integrates WiFi and Visual sensors in
a dual-layered system. This dual-layered approach separates
the tasks of local and global trajectory estimation making
ViWiD resource efficient while achieving on-par or better
performance to state-of-the-art Visual SLAM. We demonstrate
ViWiD’s performance on four datasets, covering over 1500 m
of traversed path and show 4.3 x and 4 x reduction in compute
and memory consumption respectively compared to state-of-
the-art Visual and Lidar SLAM systems with on par SLAM
performance.
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I. INTRODUCTION

Diverse indoor applications are increasingly interested in
deploying autonomous indoor robots. These robots are typi-
cally equipped with Simultaneous Localization and Mapping
(SLAM) frameworks to enable real-time navigation and to
generate a human-readable map of the robot’s environment.
To enable these applications, most state-of-the-art SLAM
systems [1], [2], [3], [4] use visual (monocular or RGB-D
cameras) and/or LiDAR sensors in tandem with odometry
measurements reported from IMUs (inertial measurement
unit) or wheel-encoders to locate themselves and map the
environment. Despite this fusion, error in the predicted
trajectory increases over time due to accumulation of sensor
errors. Fortunately, these drifts can be corrected with ‘loop
closures’ [5] which correlate the current observation with a
dictionary of past observations, ensuring self-consistency of
the robot’s estimated trajectory on a global scale.

Unfortunately, these much-needed loop-closures are also
the weakest links in SLAM systems, as they increase the
memory requirements, are compute intensive, and are not
robust [5]. In particular, false-positive loop closures, common
in monotonous or visually dynamic environments, are highly
detrimental to robot pose predictions. Furthermore, as we
scale to larger spaces, performing loop closures demands the
storage of an ever-larger dictionary of unique observations,
demanding higher memory usage. Consequently, the feature
matching needed to discover loop closures in large spaces re-
quires extensive search, leading to high compute requirements.
Thus, for real-time SLAM systems to be both accurate and
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scalable, it is imperative they are resource-efficient. Hence,
we explore if these resource consuming loop closures can be
entirely removed while maintaining SLAM accuracy.

To develop a SLAM system without loop closures, we need

to find an alternative method to re-identify previously visited
spaces and make the current pose estimate consistent with past
estimates in that space. Incorporating static and uniquely iden-
tifiable landmarks in the environment aids in re-identifying
previously visited spaces. Furthermore, accurately mapping
their poses allows the robot to leverage these landmarks to
anchor its estimate to the environment and circumvent loop
closures. Accordingly, various static landmarks which are
identifiable by cameras [6] or LiDARs [7] have been deployed
where loop closures are insufficient to correct for drifts.
Unfortunately, these visual landmarks can fail in situations of
blockage or dynamic lighting conditions. Their deployment
further scales poorly to large environments.
Goal: Clearly, to deliver a resource-efficient and real-time
SLAM system, we need to incorporate ‘uniquely identifiable’
and ‘mappable’ landmarks in our environments. These land-
marks need to be robust in dynamic environments and easily
scalable to large spaces.

To achieve this goal, we demonstrate that WiFi access
points are a robust replacement to these visual landmarks
and can aid in removing ‘loop-closures’. We develop ViWiD
which integrates them with visual sensors for accurate and
resource-efficient SLAM without relying on loop closures.
ViWiD is also readily scalable, as WiFi access points are
already ubiquitously deployed in indoor environments making
them a natural choice for a landmark.

A. Literature Review

Most existing Visual and LiDAR SLAM algorithms try
to resolve memory issues in loop-closure detection and
identification by: (a) optimizing key-frame and key-point
detection [4] to reduce the number of key-frames stored, or
(b) using a smart representation, like bag-of-words [2] for
efficient storage and retrieval. While these solutions reduce the
amount of memory required per step, the underlying problem
of the memory consumption being linear in the length of the
robot’s trajectory remains. This implies that even the most
efficient representations will eventually run out of memory
given a large or complex enough environment.

Past work [8] demonstrated accurate WiFi based SLAM,
which has no need for loop closures as its WiFi measurements
exist in a globally consistent reference frame, even if the
positions of the anchors are unknown beforehand. However,
it performed only an a-posteriori fusion of wheel odometry
and WiFi measurements and cannot perform online robot
operation. There are also works like WSR [9], which



demonstrate robot reconnaissance using WiFi and not global
indoor navigation. Most other existing WiFi-based SLAM
systems [10], [11], [12], [13] depend only on WiFi RSSI read-
ings which are unreliable in dynamic indoor scenarios [14]
and require a-priori fingerprinting data for navigation.
Other RF-sensor technologies that are used for localization
which are shown to extend to robotic navigation include
UWB [15], BLE [16], [17], RFID [18], or backscatter
devices [19]. However, these RF-sensors are (a) not as
ubiquitously deployed limiting wider adoption or (b) have
shorter ranges compared to WiFi limiting their scalability to
large spaces.
B. Challenges
In this paper, we present ViWiD, ”Visual WiFi Dual-graph”,
a dual-layered real-time SLAM system which overcomes the
need of loop-closure detection making it resource efficient.
To build ViWiD, we surmount the following challenges:
(a) Tradeoff between WiFi measurement accuracy and
compute: We have seen from existing works [8], [9], [19] that
bearing measurements extracted from the WiFi Channel-state
estimate (CSI) are viable for WiFi based SLAM algorithms.
These systems use super-resolution algorithms like MUSIC
and SpotFi [20] to obtain low-noise bearing measurements
needed for online operation. However, this accuracy comes
at the cost of computation, and are not suitable for realt-time
deployment on devices with low compute capabilities.
(b) Infeasible sensor fusion via a single factor graph:
Most sensor-fusion techniques rely on incorporating measure-
ments within factor graphs [21] to optimally solve for the
SLAM problem. Unfortunately, WiFi is subject to outlier
measurements due to transient reflections, so immediate
incorporation of every measurement can hurt the local state
estimate. Hence, a simple integration of WiFi landmarks into
the same framework as a Visual/LiDAR sensor [2] can lead
to a poor estimate of the recent robot poses due to local
inconsistency in WiFi measurements.
(c) Initialization of Unknown WiFi anchors: As new
landmarks, visual or WiFi-based, are discovered, they need to
be accurately placed in the map to ensure stable convergence
of the factor graph. This task is easy in the case of visual
markers’ [6], [7] owing to the pixel-scale accuracy of cameras
and LiDARs. Unfortunately, the poorer resolution offered by
WiFi measurements makes initialization of the AP’s position
estimate in the environment nontrivial. A poor initialization
can lead to the non-optimal state estimate or worse, an
indeterminacy in the solution.
C. ViWiD’s Contributions
To overcome these challenges, ViWiD deploys a bifurcated
design: (a) a third-party visual-inertial odometry (VIO)
module that can provide accurate and real-time odometry
measurements at a local scale, and (b) and a WiFi sensor
module that can plugs into an existing VIO system and
performs online correction of global drifts. Using these
insights, we make the following contributions to enable
accurate, real-time indoor navigation for robots.
(a) Accurate and compute-efficient WiFi Measurements:
ViWiD breaks away from the accuracy-compute tradeoff by

designing a PCA-based WiFi Bearing (PCAB) estimation
algorithm. By adequately combining WiFi measurements over
time to suppress noise, PCAB circumvents compute intensive
super resolution algorithms whilst delivering accurate and
real-time bearing estimates.

(b) Extensible dual graph optimization: To make best
use of the WiFi and visual sensors, ViWiD proposes to
construct a Visual-WiFi Dual graph system. We utilize
local odometry measurements (without global loop closure
detection) extracted via inertial sensors and visual feature
tracking. These local odometry measurements are then fused
with WiFi measurements to track the WiFi landmarks in the
environment by our WiFi graph. This dual-graph approach
further allows robots to plug-and-play ViWiD into the existing
Visual/LiDAR SLAM systems whilst reducing their compute
and memory consumption.

(¢) Smart initialization of WiFi landmarks: Finally, to
dynamically map these WiFi landmarks when they are first
observed, the robot tracks the strength of the WiFi signal
from the access point (AP). Next, we initialize the APs
location close to the robot’s current location when we see
an inflection point in the change of signal strength measured.
This allows us to initialize the AP close to its true location,
which improves the convergence of the factor graph.

To verify our claims, we have deployed ViWiD on a ground
robot TurtleBot2 platform that is equipped with a Hokuyo
LiDAR and Intel Realsense D455 RGB-D camera with a
built-in IMU for deploying cartographer [3] and Kimera [2]
respectively. We also equip it with a 4 antenna WiFi radio [22].
We deploy the robot in one large environment to collect data
for demonstrating ViWiD’s compatibility with Kimera’s VIO
outputs (with loop-closures turned off), in addition to three
open-sourced datasets [8] that we use to demonstrate ViWiD’s
deployability with LiDAR-inertial odometry (LIO) from
Cartographer. Across these deployments the robot traverses
for an overall time of 108 minutes and a distance of 1625 m.
We show that ViWiD achieves a median translation error of
70.8 cm and a median orientation error of 2.6°, on par with
the state-of-the-art Kimera [2] and Cartographer [3]. While
achieving a similar navigation accuracy: (a) ViWiD only needs
a total of 0.72 GB for a 25 minute run, wherein Kimera needs
2.82 GB, (b) ViWiD utilizes on average 0.72 fraction of single
core of CPU whereas Cartographer utilizes over 3.2 cores
of the CPU on average. Thus ViWiD demonstrates accurate,
low-compute and low-memory SLAM.

II. VIWID’S DUAL LAYERED DESIGN
ViWiD seeks to deploy a SLAM system which can be compute
and memory efficient. However, most current visual-based
SLAM systems rely on resource-intensive loop closures to
correct for inevitable drifts in robot’s trajectory predictions
and ensure consistency. Fortunately, a solution to circumvent
these loop closure operations exists — deploy identifiable and
mappable landmarks in the environment to anchor the robot
to it’s environment and help it provide accurate trajectory
estimates. But most of the current visual markers fail in
dynamic environments or are tedious to deploy. To improve
the robustness of these unique landmarks and hence guarantee
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Fig. 1: Shows WiFi bearings () measured using a linear antenna
array with antenna separation d. The additional distance dsin(f)
travelled by the signals can be exploited to estimate the bearing

a consistent trajectory, ViWiD leverages WiFi access points
in the environments as the much-needed landmarks. WiFi
access points are uniquely identifiable from the hardware
MAC address and can be mapped in the environment as
shown by recent work [8], thus meeting the two criteria for a
landmark. Moreover, unlike aforementioned visual landmarks,
WiFi is ubiquitously deployed in indoor environments, and it
is unaffected by visual occlusions or dynamic environments.

However, we are presented with three important challenges.
First, for the access point to be ‘mapped’ into the environment,
we require consistent and error-free WiFi measurements from
the WiFi signals received at the robot from these access points
(Sec. [[I=A). Second, these WiFi measurements need to be
appropriately optimized with visual and odometry sensors
to provide a globally consistent trajectory (Sec. [[I-B). And
third, the optimizer needs to be well initialized to ensure
timely convergence so that a real-time trajectory may be
furnished (Sec. [I-C). In the following sections we will seek
to surmount these challenges to deliver ViWiD, an accurate
and resource efficient SLAM system.

A. Providing accurate and real-time WiFi measurements

Recent research into decimeter accurate WiFi localization [14],
[20] and accurate WiFi SLAM [8], [9], [19] has shown that
bearings are a viable WiFi-based measurement for indoor
localization and tracking. Inspired from these works, we use
the bearing measured from the incoming signals at the robot
as our WiFi measurements (as shown by the solid line in
Figure 1) to help the robot ‘map’ the access points in the
environment. Specifically, these bearing measurements at the
robot provide the direction of the WiFi AP’s in the robot’s
local frame along the azimuth plane. In fact, this is similar
pixel coordinates of a corner feature in an image frame which
provide its bearing in both azimuth and elevation.

These WiFi-bearings can be estimated using the Channel
State Information, CSI, measured on reception of a WiFi
signal [8], [20]. However there are three challenges which
need to be surmounted for accurate bearing estimates, (a)
multiple reflected copies of the same WiFi signal arrive at
the robot and corrupt the bearing measurements; (b) concrete
walls or metal reflectors can block the direct path signals and
create inconsistent bearing estimates; (c) linear antenna array
geometries commonly deployed in [8], [20] can reduce the
diversity of bearings which can be measured definitively and
in turn reduce the number of measurements which can be
incorporated into the system. Let’s tackle the first challenge
by modelling the WiFi channel in the environment.

Accurate and Real-time bearing measurements: The pri-
mary reason for inaccuracies in the bearing measurements
for indoors is multipath [20], [23], [14]. A WiFi signal, with
wavelength J, is broadcast, and multiple reflections of the
signal (multipath) along with the direct path, impinge at the
receiver as shown in Figure [T] (left). Clearly, the ‘direct-path’
(solid-line) is the only path helpful in estimating the bearing
(6) to the source and the rest of the ‘reflected-paths’ (dotted
lines) are the cause for erroneous bearing estimates.

To understand these effects, we provide a simple mathemati-
cal model. The receiver measures, at time ¢, a complex-valued
channel state information (CSI) describing the phase delay
and attenuation across each of the M receiver antennas and
N orthogonal frequencies [20] as,
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where, a,,,, is the attenuation; d is the antenna separation
for the linear antenna array; f,, is the orthogonal frequency;
T is the time-of-travel of the signal, which is often corrupted
by the random ) phase offset due to lack of transmitter-
receiver clock synchronization; and ¢,, () is the additional
phase accumulated at the m™ antenna (Figure |I) due to
the additional distance travelled by the signal. The various
reflected paths impinging on this linear array will add to each
antenna and frequency component in a similar manner.

To identify the direct signal’s path among the multiple
reflected paths, past Wi-Fi systems[14] have used algorithms
that ‘super-resolve’ the measured signal. By using information
across these N different frequency bins, they measure the
relative time offset between different signal paths. This allows
identification of the direct path, as it must have traveled the
least distance of all paths and thus arrives before the other
reflections. However, the addition of this extra dimension
of time-offset adds computation overhead, making them
unsuitable for resource-efficient SLAM algorithms.

So, in ViWiD, we reduce the dimensionality of our
problem and yet reliably segregate the direct path signals
from the clutter of the reflected paths. Specifically, from
the channel model described in Spotfi [20], the largest
eigenvector (U; € CM) of X, X} € CM*M provides the
largest contribution to the channel measured across the M
receive antennas. However, this largest component could
potentially be corrupted by multipath. To remove the effect
of multipath, we make a simple observation — reflected paths
are susceptible to small changes in the robot’s position as
opposed to the direct path which will arrive at a consistent
bearing. Hence we can effectively ‘average-out’ the effects
of multipath from our bearing estimation if we can combine
our measurements across time (over multiple packets). We
can effectively do this by finding the largest eigenvector over
most recent 7' measurements across the past .5 seconds:

t
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Fig. 2: Bearing errors are accumulated in steps of 10° for the the
square antenna array (Zop) and linear array (Bottom).

Where A() extracts the largest eigenvector, which is trivial
to compute for our M x M autocorrelation matrix. From
here, our direct path signal U; can be mapped to a bearing
by a coarse search over the space of possible bearings,

M
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This method, dubbed Principle Component Analysis based
Bearing (PCAB), allows us to achieve similar bearing
estimation performance to the standard 2D-FFT algorithm [8]
and Spotfi [20] at just a fraction of the compute.

RSSI Filtering: But we have made an implicit assumption
in PCAB that a direct path signal from an access point is
present. However, in cases where a large reflector blocks the
direct path, no information can be obtained about the direct
path’s bearing, and hence can lead to inconsistent bearing
measurements. These non-line-of-sight (NLOS) scenarios
are common and need to be handled adequately to avoid
instability of the factor graph. We observe that in these
situations, overall received signal power (RSSI) is typically
very low, as the majority of the signal has been blocked.
Hence, we reject all measurements with RSSI below —65dBm,
which we empirically observe filters out the vast majority of
these obstructed packets. Thus, ViWiD provides real-time,
unambiguous and accurate bearing measurements to be fed
into the WiFi factor graph, described in Sec. [II-B|
Unambiguous Measurements: Finally, to enable reliable
‘mapping’ of our WiFi landmarks, we would like to measure
bearings from the largest range of angles. Unfortunately, the
uniform linear arrays used by existing bearing estimation
algorithms [20], [8] are vulnerable to aliasing - they can
only measure bearings in a 180° range(i.e. the top half plane
in Figure |I) at a time, as there is no distinction between
signals coming from opposite sides of the array. This is
further seen in the search space of bearing angles as in Eq[2]
Furthermore, as shown in Figure Qbottom), these arrays have
poorer accuracy when WiFi signals arrive nearly parallel to the
array (near £90). To maximize the range of measured angles,
we resolve this ambiguity by adopting a square antenna array,
which does not suffer from aliasing. This can be further seen
from Figure [Jtop) — ViWiD finds a good trade-off between
resolution and aliasing, and is able to resolve angles from
—160° to 160°. Note however we cannot extend the range
to the entire 360° due to ambiguity present for WiFi signals
arriving from behind the robot. Transitioning to a square array
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Fig. 3: ViWiD’s WiFi Graph (a) Shows the various measurements
that are made across robot poses and AP poses. (b) Shows the details
of how these measurements are laid as factors in the implementation
of the WiFi Factor graph

however changes the differential phases measured (Eq|l) as,

om(0) = —277T(Xm cos(f) + Y;,, sin(0)), 3)

the relative position of antenna m is (X,,, Y;,) with respect
to the first antenna.

Finally note that these CSI measurements need to be
sanitized beforehand the of random phase offsets (/) and a
one-time calibration needs to be applied as further explained
in Spotfi [20]. Hence, by averaging-out multipath over
multiple consecutive packets, rejecting NLOS measurements
via RSSI filtering and incorporating a square antenna array
at the robot, we have effectively furnished low-compute and
accurate bearings over a 320° range of angles to reliably ‘map’
our WiFi landmarks. Next, we tackle how to incorporate these
WiFi measurements into our optimizing backend to correct
for trajectory drift.

B. Building and Optimizing the WiFi-Graph

Given these WiFi-bearing measurements, the first idea would
be to integrate them within the factor graph of an available
Visual Factor graph [2]. Unfortunately, discovery and addition
of new AP’s and global drift corrections introduce brief
periods of instability (order of few seconds) to the robot’s
trajectory estimates. These instabilities can introduce large
computation overheads as it may demand corrections to the
tracked visual landmarks as well. To isolate these periods
of instability, we propose a dual graph approach, where the
drift-corrected poses from the WiFi graph can be utilized for
globally consistent mapping. But unlike prior work [8], [13],
we do not use end-end optimization and instead opt to use
incremental smoothing and mapping (iSAM [21]) to provide
real-time pose estimates, which demands a more accurate
and realtime bearing estimation as achieved in Sec. [[I-A

To build the WiFi graph, consider the state space at time ¢,
S;. Tt is a set of robot poses and access point locations over
t time steps in our graph, S; = {p; Vi € [1,¢]} U{Z; Vj €
[1, N]}, with the robot pose, p; € SE(3) and the N access
points positions observed till time ¢, x; € R3. We can the
define odometry measurements (from VIO/LIO or wheel
encoders, as shown in Fig [3) between poses p; and p;;1 at
two consecutive time steps as:

R(pH) = (plyy — o))"
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where, R(-) € SO(3) is the rotation matrix corresponding to
the given quaternion, © is the relative difference between two
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quaternions, and [1 : 3] chooses only the first three elements
of the quaternion. Similarly, the bearing factors from AP j
at robot position x; is zermg (pi,z;) € R?%:

égeamng (pi’ Jjj)

= Local([cos(¢) cos(8), cos(¢) sin(8), sin(¢)]T, p;)

where, TransformTo(-) transforms the coordinates of the AP
x; to the coordinate system provided by the robot at p;, in
which the AP subtends an elevation angle of ¢ and an azimuth
angle of 0. Local(-) projects this bearing measurement to the
tangent plane defined by the current pose of the robot, p;.
Having defined the measurement models, we can estimate
the optimized robot poses S?** for time ¢ by minimizing the
total error between our predictions and actual measurements,

= Local(TransformTo(x;,p;),p;) (4)

opt __ beamng Tw—-1 bearing .
S argmln? : § : ( bearing ~ij €
i<t j<N
§ odom 1 odom
+ Eodom 7 (5)
lelsub
bearing __ _Bearing sBearing .
where e, = z;; -z (ps, ;) is the bear-

ing factor’s error between robot and AP poses i and j;
odom (p“pl+1) — Z;)dom _ Aodom (p“p1+1) is the odom
factor s error; p is the Huber cost function with parameter
¢ [24]. Zodom € R®*C and Tpearing € R?*? are diagonal
covariance matrices for odometry and bearing measurements
respectively. Further note that the bearing measured in Sec.
E] measured 6, the azimuth angle in the robot’s local frame
and we assume that the elevation, ¢, of the incoming signal
is 0, hence z?ea””g = [cos() sin(f)]. We can assume the
elevation angle is 0 despite AP’s placed at differing heights
as it has little affect to the azimuth bearing estimation [8].

C. Initialization of Factors

Next, we initialize each of the ¢ robot positions and N AP
positions for the optimizer. Similar to prior works [8], the
robot positions are initialized using the relative odometry
measurements. These poses have accumulated drift over time
which we seek to correct. A naive initialization for the
AP’s would be to place them at the origin and allow the
optimizer to place them appropriately in the environment [8].
Unfortunately, the iISAM optimizer, given the limited number
of measurements it has seen until time ¢, can fail to converge
with this naive initialization.

To solve for this in-determinancy due to poor initialization
of the AP’s position estimate, we draw from the intuition of
WiFi signal propagation characteristics. WiFi’s received signal
signal strength indicator (RSSI), has been studied extensively
in the past for localization. While RSSI measurements are
unreliable to perform accurate localization, they can still
provide a general sense of proximity. Thus, we can identify
the robot’s position pZ . € R® at which the j™* AP’s
RSSI measurement has an maxima inflection point among
all current robot’s poses p;Vi € [1,t], with the intuition that
this is where the robot passed closest to the AP. We can then
initialize the j** AP’s pose xT; as x; = pap7 + A, where
A € R? is a small (< 0.1m) random perturbation. This

random perturbation is added to avoid in-determinancy with
the optimizer. Finally, with the real-time, compute-efficient
WiFi-bearing in hand, along with a reliable way to integrate
these measurements with local odometry measurements, we
can proceed with the graph optimization iteratively with each
time-step. In the following section we will provide specific
implementation details.
ITI. IMPLEMENTATION

Hardware: We implement ViWiD on the Turtlebot 2
platform. For WiFi CSI data collection, we attach an off-
the-shelf WiFi radio [22] to the Turtlebot. Then we place
a few of the similar APs near the ceiling at a density of
roughly one every ten meters. We transmit on channel 42 of
5GHz WiFi. We then use an open-sourced toolbox [22] to
collect channel state information (CSI) data from all the APs
at the WiFi radio on the robot. Our robot is also equipped
with a Hokuyo UTM-30LX LiDAR and a Intel D455 RGBD
camera with an IMU.

Software: Given this setup, we compare our system against
the realtime performance of two systems (a) Kimera [2], a
state-of-the-art VIO that uses the Intel D455 + IMU for its
SLAM, and (b) Cartographer [3], a state-of-the-art LIO that
uses the wheel encoders and the Hokuyo LiDAR for its SLAM.
The Turtlebot is controlled with a laptop running Robot
Operating System (ROS-Kinetic), which manages all sensor
input. WiFi CSI measurements are also integrated into ROS,
and ViWiD is implemented as a C++ application to ensure
realtime operation and integrated within ROS as a ROS-node,
allowing for easy integration with other robotics systems. The
Wi-Fi factor graph is implemented in GTSAM [21], and we
utilize the open-sourced library to implement Kimera and
Cartographer. ViWiD’s codebase will be open-sourced upon
the paper’s acceptance.

IV. RESULTS

Next, we demonstrate ViWiD’s performance in 4 datasets and
compare it with state-of-the-art SLAM systems Kimera [2]
(VIO) and Cartographer [3] (LIO). Across these datasets, we
compare three aspects of each algorithm’s performance:

(a) 3-DoF Navigation Accuracy: XY euclidean translation
error and absolute orientation error,

(b) Memory Consumption:[] The total memory consumed
for a run of the dataset, and also the rate of memory
consumption, to understand scalability to larger indoor spaces,
and

(c) Compute Cost: As the max and average number of cores
required by the algorithm to perform online SLAM.
Datasets: To demonstrate our system against Kimera (which
requires a stereo-camera), we deploy a robot in a 20 x 25 m
environment with 3 WiFi APs, with the robot traversing a
total distance of 403 m over a duration of 23 minutes (called
ViWiD DS). We also use the open-sourced datasets [8] that
we call DS 1/2/3. But these 3 datasets do not have stereo-
camera data, and use a linear antenna array on the robot, for
which the aliasing is resolved using ground truth information.
Through these 4 datasets, we have robustly tested ViWiD
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Fig. 4: End-to-end evaluation: (a, b) Translation and orientation errors comparing Kimera with loop closure against ViWiD’s predictions.
ViWiD uses odometry from Kimera without loop closures and just wheel odometry . (¢, d) Time series of translation and orientation error
comparing Kimera with loop closure against ViWiD’s predictions. ViWiD uses odometry from Kimera without loop closures.
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Fig. 5: Trajectories: A top-down view showing the Trajectories
estimated by (a) Kimera with loop closures and ground truth.
(b) ViWiD using odometry predictions from Kimera without loop
closures (WiFi + VIO) and ground truth.

across 3 distinct environments, 4 different and realistic access
point placements, and traversed a cumulative distance of
1625 m with a total travel time of 108 minutes. To obtain
ground truth labels, we allow Cartographer to run offline with
very extensive search parameters, which converges to a near
ground truth trajectory as characterized in DLoc [23]. Finally
we intend to open source this dataset for the benefit of the
larger research community up on the paper’s acceptance.
Baselines: We compare ViWiD’s performance with (a)
Kimera in the ViWiD DS, (b) Cartographer in all the datasets.
Kimera and Cartographer have their loop-closures fine-tuned
to provide the best realtime performance.

ViWiD’s modular dual-graph design enables the WiFi-graph
to receive odometry measurements from different SLAM
systems. Thus, we give ViWiD the following sources of
odometry: (a) WiFi+VIO: Online Kimera without the Loop
Closure detection node, (b) WiFi+LIO: Online Cartographer
without global scan matching, and (¢) WiFi+Odom: The
built-in wheel encoder on the TurtleBot. Further note that we
disabled visualization on Kimera and Cartographer to only
account for the memory and computation by the optimization
backend and keyframe storage.

We compare Kimera with WiFi+VIO and Cartographer
with WiFi+LIO and provide an in-depth analysis of results
and plots for Kimera Sec. [V-Aland summarize the results for
Cartographer in a table in Sec. [[V-B] due to space constraints.
Finally, in Sec. [V-C] we demonstrate the fine-tuning and
trade-offs for both Kimera and Cartographer.

A. End-to-end evaluation (ViWiD with Kimera):

First, we show how ViWiD provides a resource-efficient
alternative to Kimera’s loop closure detection module with
on-par or better navigation accuracy.

Navigation Accuracy: We compare the CDF and time-
series translation errors in Figure [f(a)(c) respectively for
ViWiD’s WiFi+VIO, WiFi+Odom, and Kimera. From these
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Fig. 6: Timeseries of memory (left) and CPU consumption (right)
of VIO, Kimera and ViWiD + VIO. The resource consumption of
the ViWiD’s WiFi graph is also analysed (Wifi only)

plots we can see that the median (90*"%) translation errors
for ViWiD’s WiFi+VIO is 85cm (185cm), and WiFi+Odom
is 90cm (205¢m), which are 60% lower compared to Kimera
with median (90¢"%) translation errors of 105cm (300cm).
Similarly Figure @(b)(d) compares the cumulative and time-
series orientation error respectively for ViWiD’s WiFi+VIO,
WiFi+Odom, and Kimera. From these plots we can see that the
median (90**%) orientation errors for ViWiD’s WiFi+VIO is
3° (8°), and WiFi+Odom is 1° (4°), i.e. 60% lower compared
to Kimera with median (90" %) orientation errors of 5° (20°).
While the median translation and orientation errors for
Kimera are comparable to ViWiD running on Kimera’s
odometry, the reason for high errors in the 90t"% are due
to an incorrect loop-closure that occurs in Kimera at around
1100 sec time-mark as can be clearly seen from the sudden
spike in errors in both Figures [@{c,d). This can be seen in
the two top-down views of the estimated trajectories shown
in Figure 5} This further demonstrates the strength of WiFi-
measurements for global corrections.
Memory Consumption: We have seen that WiFi provides
more accurate and real-time global drift corrections than
Kimera’s loop closures. Now, we evaluate the memory
consumption of the individual components of Kimera and
ViWiD and observe the trends shown in Figure |§| (left), from
which we can see that while Kimera needs a start up memory
of 2 GB and from then on accumulates memory at a rate
of 0.56 MBps. In contrast, WiFi + VIO only has a start-up
memory of 0.4 GB and memory accumulation rate of 0.2
MBps, which will on an average enable ViWiD to run 3.3x
longer than Kimera on a typical RAM of 8 GB before crashing.
We can further verify that Kimera’s memory consumption is
dominated by loop closures — the black line in Figure [6] (left)
for the VIO, which is Kimera without loop-closures, indicates
the memory remains constant at 0.2 GB. It is important to
note here that since Kimera’s VIO has near-constant memory



TABLE I: Translation, Orientation, and resource analysis of Cartographer and ViWiD + LIO, median (99*"percentile error)

Cartographer [3] ViWwiD + LIO
ViwiD DS DS 1 DS 2 DS 3 ViwiD DS DS1 DS 2 DS 3
Translation Error (cm) 47.0 (98.9) | 74.0 224) | 134.1 (1097) | 23.3 (37.4) || 50.34 (152.4) | 65.9 (92.2) | 67.3 (182.6) | 48.6 (114.4)
Orientaion Error (°) 4.8 (7.9) 0.8 (4.66) 5.3 (12.6) 0.6 (1.4) 3.5 (6.9) 2.4 (4.66) 2.8 (12) 1.4 (3.3)
Total Memory (MB) 520 702 658 423 486 613 706 356
Rate of Memory (MBps) 0.30 0.29 0.33 0.38 0.32 0.22 0.33 0.26
CPU (fraction of cores) 3.8 (4.4) 32 (4.2) 3.8 (4.2) 1.85 (4.4) 0.73 (1.90) 0.62 (2.1) 0.85 (2.8) 0.7 (1.1)

consumption, the accruing memory consumption of ViwiD’s
stack is purely due to the WiFi-graph as shown by the purple
dashed line in Figure [0 (left). We note that this could be
avoided if the WiFi-graph employs a fixed-lag smoothing
optimization strategy similar to the VIO system, which will
be left for future work.

Compute Requirements: Finally, we can also see from
Figure [ (right) that ViWiD requires only one core to run
on our system, while Kimera takes up to 1.5 cores owing
to its loop closure detection and correction algorithms. Thus
ViWiD’s WiFi+VIO design requires about 3.3 X less memory
and 1.5x less compute than a state-of-the-art Kimera system
while achieving about 60% better navigation performance.

B. End-to-end evaluation (ViWiD with Cartographer):

We also test ViWiD running on Cartographer’s LIO and
compare it online with full-stack Cartographer across all the
4 datasets, DS 1/2/3 and ViWiD DS and present a summary
of the results in Table [I] due to space constraints.
Navigation Accuracy: From this table, we can see that
ViWiD’s trajectory estimation performs on-par with Cartogra-
pher’s loop closure detector across most datasets in terms of
translation and orientation accuracy. There are two notable
differences in navigation accuracy performance:

(a) in DS 2 ViWiD’s median (90*") translation and
orientation errors are 2x (5x) lower for ViWiD + LIO
than Cartographer. In this scenario, Cartographer makes an
incorrect loop closure leading to a very inconsistent trajectory
prediction, as can be common with visual-based loop closures.

(b) in DS 3, Cartographer has 2x lesser translation and
orientation errors than WiFi+LIO. We notice this performance
degradation from the use of linear array on the robot. As
discussed in Sec. bearing measurements closer to £90°
suffer from higher errors, and due to a non-optimal orientation
of linear array, we observe a larger number of bearing
measurements at these higher angles, reducing the SLAM
performance. Utilizing a square array resolves these issues.
Memory Consumption: The memory consumption of Vi-
WiD and Cartographer are similar. This occurs because, unlike
Kimera’s VIO system where each camera frame consists of
dense features, Cartographer’s LIO system’s LiDAR scans are
much smaller, reducing Cartographer’s memory consumption.
Compute Requirements: Due to the sparsity of LiDAR
features, Cartographer needs to run scan-matching algorithms
for loop closures, which in turn increases Cartographer’s
compute requirements. In contrast, since ViWiD running
on Cartographer’s local odometry does not require scan
matching to correct the global trajectory, it demands much
lesser compute resources. This can be observed in the last
row of Table [I| which shows the average number of cores
used over the entire run of the robot navigation with the

maximum number of cores used in parentheses. We can see
that ViWiD needs 4 x lesser peak compute than the full-stack
Cartographer implementation across all 4 datasets.

C. Microbenchmarks

VIO Memory vs Accuracy: To characterize Kimera’s mem-
ory usage, we alter the rate at which it records keyframes for
loop closure detection. A lower time between keyframes will
lead to more loop closure detections at the cost of increased
memory consumption. To understand how Kimera’s loop
closure detection accuracy is limited by memory, we plot the
median translation error and the total memory consumed in
ViWiD DS (Figure [7(a)). From this plot, we can see that the
best median translation error with reasonably low memory
consumption occurs at a keyframe period of 1 second and
we use this keyframe rate for our baseline.

LIO Compute vs Accuracy: To next understand the perfor-
mance of Cartographer we first note that single-plane-based
LIO systems have sparse features in LIDAR scans, as opposed
to denser stereo data. This sparser representation demands
extensive scan-matching algorithms [3] with higher compute.
Thus to understand Cartographer’s compute requirements, we
run Cartographer on ViWiD DS and limit the number of CPU
cores it can access. We plot the median translation accuracy
vs number of CPU cores accessible in Figure[7(b). We can see
that median translation error improves with a larger number
of cores, verifying that compute power is a bottleneck for
accurate scan matching, and thus navigation performance.
Keeping in mind that many low-compute platforms are limited
to 4 cores, we restrict Cartographer to use 4 compute cores
only in the end-to-end comparison.

Wheel-based Odometry vs Kimera without LCD (VIO)
and Cartographer without LCD (LIO): Now, let us
compare how accurate the odometry measurements from
Kimera and Cartographer without loop closures are to wheel
odometry provided by the Turtlebot. Figure [/(c) shows
the comparison of their translation errors, from which we
can see that the odometry measurements from Kimera and
Cartographer without loop closure have lesser errors at both
the median and 90**% than odometry from wheel-encoders.
This supports the dual-graph design intuition of ViWiD
wherein the odometry from the VIO/LIO-graph is locally
corrected and so is better at local odometry and mapping
than simple wheel-encoder systems.

Bearing Accuracy and Compute: Finally, to understand
the accuracy and compute-requirements of bearing-estimation
algorithms and the need PCAB (Sec. [[I-A), we compare
it with 2D-FFT defined in P2SLAM [8] and Spotfi [20].
As shown in Figure [7(d), PCAB outperforms 2D-FFT in
bearing estimation by 1.43x (2x) at the median and 80*"%.
Additionally, we note that the average CPU utilization of




. 250 —o-Median Error 7 o 2
% .
—~200 -+RAM Usage .~ S}
E % /" 6 & .E’ Els
= <150 / g8 1
c = n @O
8 2 45 g E
TG0 e s m%os
s <
50 2 0
01 03 050751 15 2 2 4 6 8 10 12

Interframe time (s)
(a)

Number of cores

Probability

0.75 >\0.75
0.5 é 051 /
° i 2D FFT
0.25 & 0.25 — )
ol o - -SPOTFI
0 3 6 9 12 15 0 30 60 90 120 150 180
Translation Error (m) Angle error (deg)
(© @

Fig. 7: Microbenchmarks: (a) Kimera: Trade-off between memory consumption and the accuracy for various interframe rates. (b)
Cartographer: Trade-off between compute required and the accuracy for various scan-matching thresholds. (¢) Odometry-Graph:
Comparison on how various odometry inputs to the WiFi graph look before optimization. (d) Bearing Measurement Algorithms:
Comparison between 2D-FFT from P?SLAM, Spotfi and our proposed PCAB.

PCAB on our robot is 11%, whereas 2D-FFT required 565%
core usage (an improvement of approx. 50x). Moreover, we
compute the AoA predictions with Spotfi [20] and find PCAB
performs 1.8 (2.2x) at the median and 80" %. Moreover,
Spotfi consumes 1200 percentage of cores (all cores of our
machine). Clearly, both the 2D-FFT and Spotfi estimations
are unsuitable for low-compute SLAM applications.

V. LIMITATIONS AND FUTURE WORK
In this work, we have demonstrated ViWiD and its modular
design can integrate into any existing VIO/LIO systems, to
remove the need of compute and memory intensive loop-
closures. Thus, ViWiD provides a framework that can enable
accurate, real-time, and resource-efficient SLAM compared to
Kimera [2] and Cartographer [3] for indoor robotics. However,
there are still some limitations of ViWiD’s novel framework
that opens new avenues for future work:
(a) While ViWiD demonstrates loop-closure free SLAM
through WiFi, any RF-sensor that can measure bearings
to unique landmarks in the environment would work. In
particular, UWB localization systems [25] can be easily
deployed in our framework to furnish 6 DoF poses.
(b) We have seen how different antenna array geometry on the
robot provides varied results, extending the work to perform
single-antenna based WiFi-SAR algorithms as demonstrated
in WSR [9] would make the system more scalable.
(c) While ViWiD demonstrates efficient SLAM for a single
robot in the environment, extensions to collaborative SLAM
for a fleet of robots presents additional challenges, making
compute and memory efficiency even more important.
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